Darmowa dostawa od 150,00 zł
Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III
Promocja Okazja

Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III

  • Rok wydania: 2022 Oprawa: miękka ISBN: 9788328388703 Ilość stron: 424 Format: 17,5 x 23,5 cm
Rozmiar

89,10 zł

brutto / 1szt.
Najniższa cena z 30 dni przed obniżką: 99,00 zł / szt.-10%
Cena regularna: 99,00 zł / szt.-10%
Cena katalogowa:
Możesz kupić za pkt.
z
Produkt dostępny w bardzo dużej ilości
Skontaktuj się z obsługą sklepu, aby oszacować czas przygotowania tego produktu do wysyłki.
Produkt dostępny w bardzo dużej ilości
Wysyłka
14 dni na łatwy zwrot
Sprawdź, w którym sklepie obejrzysz i kupisz od ręki
Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III
Python. Uczenie maszynowe w przykładach. TensorFlow 2, PyTorch i scikit-learn. Wydanie III
Bezpieczne zakupy
Odroczone płatności. Kup teraz, zapłać później, jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Po zakupie otrzymasz pkt.

Systemy oparte na uczeniu maszynowym są coraz bardziej wyrafinowane. Spośród wielu narzędzi służących do implementacji algorytmów uczenia maszynowego najpopularniejszy okazał się Python wraz z jego bibliotekami. Znajomość tych narzędzi umożliwia sprawne tworzenie systemów uczących się, jednak uzyskanie spektakularnych wyników wymaga doświadczenia i wprawy. Konieczne są więc ćwiczenia i praktyka w samodzielnym rozwiązywaniu problemów.

To trzecie wydanie popularnego podręcznika, który ułatwi Ci zdobycie praktycznej wiedzy o uczeniu maszynowym w Pythonie. Zapoznasz się z różnymi technikami implementacji algorytmów uczenia maszynowego. Przeanalizujesz rzeczywiste przykłady techniki eksploracyjnej analizy danych, inżynierii cech, klasyfikacji danych, regresji, klastrowania i przetwarzania języka naturalnego. To wydanie uzupełniono o najnowsze zagadnienia ważne dla biznesu, takie jak tworzenie systemu rekomendacji, rozpoznawanie twarzy, prognozowanie cen akcji, klasyfikowanie zdjęć, prognozowanie sekwencji danych i zastosowanie uczenia przez wzmacnianie w podejmowaniu decyzji. Dzięki książce poznasz omawiane zagadnienia od strony praktycznej i zdobędziesz wiedzę potrzebną do skutecznego rozwiązywania problemów z systemami uczącymi się.

W książce między innymi:

  • gruntowne podstawy uczenia maszynowego i nauki o danych
  • techniki eksploracji i analizy danych za pomocą kodu Pythona
  • trenowanie modeli za pomocą Apache Spark
  • przetwarzanie języka naturalnego przy użyciu bibliotek Pythona
  • praktyczne wdrażanie modeli i algorytmów uczenia maszynowego
  • korzystanie z bibliotek Pythona: TensorFlow 2, PyTorch i scikit-learn

Wypróbuj najlepsze praktyki uczenia maszynowego z Pythonem!

O autorze książki

Yuxi (Hayden) Liu rozwija modele uczenia maszynowego w Google. Wcześniej pracował naukowo nad zastosowaniami uczenia maszynowego w takich dziedzinach jak reklama internetowa i cyberbezpieczeństwo. Jest entuzjastą edukacji i autorem wielu książek o uczeniu maszynowym. Pierwsze wydanie tego podręcznika zajmowało wiodącą pozycję w rankingu Amazona w latach 2017 i 2018.

 

Spis treści książki

O autorze

O korektorach merytorycznych

Rozdział 1. Pierwsze kroki z uczeniem maszynowym w Pythonie

  • Wprowadzenie do uczenia maszynowego
    • Dlaczego uczenie maszynowe jest potrzebne?
    • Różnice między uczeniem maszynowym a automatyką
    • Zastosowania uczenia maszynowego
  • Wstępne wymagania
  • Trzy rodzaje uczenia maszynowego
  • Istota uczenia maszynowego
    • Uogólnianie danych
    • Nadmierne i niedostateczne dopasowanie modelu oraz kompromis między obciążeniem a wariancją
    • Zapobieganie nadmiernemu dopasowaniu poprzez weryfikację krzyżową
    • Zapobieganie nadmiernemu dopasowaniu za pomocą regularyzacji
    • Zapobieganie nadmiernemu dopasowaniu poprzez selekcję cech i redukcję wymiarowości
  • Wstępne przetwarzanie danych i inżynieria cech
    • Wstępne przetwarzanie i eksploracja danych
    • Inżynieria cech
  • Łączenie modeli
    • Głosowanie i uśrednianie
    • Agregacja bootstrap
    • Wzmacnianie
    • Składowanie
  • Instalacja i konfiguracja oprogramowania
    • Przygotowanie Pythona i środowiska pracy
    • Instalacja najważniejszych pakietów Pythona
    • Wprowadzenie do pakietu TensorFlow 2
  • Podsumowanie
  • Ćwiczenia

Rozdział 2. Tworzenie systemu rekomendacji filmów na bazie naiwnego klasyfikatora Bayesa

  • Pierwsze kroki z klasyfikacją
    • Klasyfikacja binarna
    • Klasyfikacja wieloklasowa
    • Klasyfikacja wieloetykietowa
  • Naiwny klasyfikator Bayesa
    • Twierdzenie Bayesa w przykładach
    • Mechanizm naiwnego klasyfikatora Bayesa
  • Implementacja naiwnego klasyfikatora Bayesa
    • Implementacja od podstaw
    • Implementacja z wykorzystaniem pakietu scikit-learn
  • Budowanie systemu rekomendacyjnego na bazie klasyfikatora Bayesa
  • Ocena jakości klasyfikacji
  • Strojenie modeli poprzez weryfikację krzyżową
  • Podsumowanie
  • Ćwiczenia
  • Bibliografia

Rozdział 3. Rozpoznawanie twarzy przy użyciu maszyny wektorów nośnych

  • Określanie granic klas za pomocą maszyny wektorów nośnych
    • Scenariusz 1. Określenie hiperpłaszczyzny rozdzielającej
    • Scenariusz 2. Określenie optymalnej hiperpłaszczyzny rozdzielającej
    • Scenariusz 3. Przetwarzanie punktów odstających
    • Implementacja maszyny wektorów nośnych
    • Scenariusz 4. Więcej niż dwie klasy
    • Scenariusz 5. Rozwiązywanie nierozdzielnego liniowo problemu za pomocą jądra
    • Wybór między jądrem liniowym a radialną funkcją bazową
  • Klasyfikowanie zdjęć twarzy za pomocą maszyny wektorów nośnych
    • Badanie zbioru zdjęć twarzy
    • Tworzenie klasyfikatora obrazów opartego na maszynie wektorów nośnych
    • Zwiększanie skuteczności klasyfikatora obrazów za pomocą analizy głównych składowych
  • Klasyfikacja stanu płodu w kardiotokografii
  • Podsumowanie
  • Ćwiczenia

Rozdział 4. Prognozowanie kliknięć reklam internetowych przy użyciu algorytmów drzewiastych

  • Wprowadzenie do prognozowania kliknięć reklam
  • Wprowadzenie do dwóch typów danych: liczbowych i kategorialnych
  • Badanie drzewa decyzyjnego od korzeni do liści
    • Budowanie drzewa decyzyjnego
    • Wskaźniki jakości podziału zbioru
  • Implementacja drzewa decyzyjnego od podstaw
  • Implementacja drzewa decyzyjnego za pomocą biblioteki scikit-learn
  • Prognozowanie kliknięć reklam za pomocą drzewa decyzyjnego
  • Gromadzenie drzew decyzyjnych: las losowy
  • Gromadzenie drzew decyzyjnych: drzewa ze wzmocnieniem gradientowym
  • Podsumowanie
  • Ćwiczenia

Rozdział 5. Prognozowanie kliknięć reklam internetowych przy użyciu regresji logistycznej

  • Klasyfikowanie danych z wykorzystaniem regresji logistycznej
    • Wprowadzenie do funkcji logistycznej
    • Przejście od funkcji logistycznej do regresji logistycznej
  • Trening modelu opartego na regresji logistycznej
    • Trening modelu opartego na regresji logistycznej z gradientem prostym
    • Prognozowanie kliknięć reklam z wykorzystaniem regresji logistycznej z gradientem prostym
    • Trening modelu opartego na regresji logistycznej ze stochastycznym gradientem prostym
    • Trening modelu opartego na regresji logistycznej z regularyzacją
    • Selekcja cech w regularyzacji L1
  • Trening modelu na dużym zbiorze danych z uczeniem online
  • Klasyfikacja wieloklasowa
  • Implementacja regresji logistycznej za pomocą pakietu TensorFlow
  • Selekcja cech z wykorzystaniem lasu losowego
  • Podsumowanie
  • Ćwiczenia

Rozdział 6. Skalowanie modelu prognozującego do terabajtowych dzienników kliknięć

  • Podstawy Apache Spark
    • Komponenty
    • Instalacja
    • Uruchamianie i wdrażanie programów
  • Programowanie z wykorzystywaniem modułu PySpark
  • Trenowanie modelu na bardzo dużych zbiorach danych za pomocą narzędzia Apache Spark
    • Załadowanie danych o kliknięciach reklam
    • Podzielenie danych i umieszczenie ich w pamięci
    • Zakodowanie "1 z n" cech kategorialnych
    • Trening i testy modelu regresji logistycznej
  • Inżynieria cech i wartości kategorialnych przy użyciu narzędzia Apache Spark
    • Mieszanie cech kategorialnych
    • Interakcja cech, czyli łączenie zmiennych
  • Podsumowanie
  • Ćwiczenia

Rozdział 7. Prognozowanie cen akcji za pomocą algorytmów regresji

  • Krótkie wprowadzenie do giełdy i cen akcji
  • Co to jest regresja?
  • Pozyskiwanie cen akcji
    • Pierwsze kroki z inżynierią cech
    • Pozyskiwanie danych i generowanie cech
  • Szacowanie za pomocą regresji liniowej
    • Jak działa regresja liniowa?
    • Implementacja regresji liniowej od podstaw
    • Implementacja regresji liniowej z wykorzystaniem pakietu scikit-learn
    • Implementacja regresji liniowej z wykorzystaniem pakietu TensorFlow
  • Prognozowanie za pomocą regresyjnego drzewa decyzyjnego
    • Przejście od drzewa klasyfikacyjnego do regresyjnego
    • Implementacja regresyjnego drzewa decyzyjnego
    • Implementacja lasu regresyjnego
  • Prognozowanie za pomocą regresji wektorów nośnych
    • Implementacja regresji wektorów nośnych
  • Ocena jakości regresji
  • Prognozowanie cen akcji za pomocą trzech algorytmów regresji
  • Podsumowanie
  • Ćwiczenia

Rozdział 8. Prognozowanie cen akcji za pomocą sieci neuronowych

  • Demistyfikacja sieci neuronowych
    • Pierwsze kroki z jednowarstwową siecią neuronową
    • Funkcje aktywacji
    • Propagacja wstecz
    • Wprowadzanie kolejnych warstw do sieci neuronowej i uczenie głębokie
  • Tworzenie sieci neuronowej
    • Implementacja sieci neuronowej od podstaw
    • Implementacja sieci neuronowej przy użyciu pakietu scikit-learn
    • Implementacja sieci neuronowej przy użyciu pakietu TensorFlow
  • Dobór właściwej funkcji aktywacji
  • Zapobieganie nadmiernemu dopasowaniu sieci
    • Dropout
    • Wczesne zakończenie treningu
  • Prognozowanie cen akcji za pomocą sieci neuronowej
    • Trening prostej sieci neuronowej
    • Dostrojenie parametrów sieci neuronowej
  • Podsumowanie
  • Ćwiczenie

Rozdział 9. Badanie 20 grup dyskusyjnych przy użyciu technik analizy tekstu

  • Jak komputery rozumieją ludzi, czyli przetwarzanie języka naturalnego
    • Czym jest przetwarzanie języka naturalnego?
    • Historia przetwarzania języka naturalnego
    • Zastosowania przetwarzania języka naturalnego
  • Przegląd bibliotek Pythona i podstawy przetwarzania języka naturalnego
    • Instalacja najważniejszych bibliotek
    • Korpusy
    • Tokenizacja
    • Oznaczanie części mowy
    • Rozpoznawanie jednostek nazwanych
    • Stemming i lematyzacja
    • Modelowanie semantyczne i tematyczne
  • Pozyskiwanie danych z grup dyskusyjnych
  • Badanie danych z grup dyskusyjnych
  • Przetwarzanie cech danych tekstowych
    • Zliczanie wystąpień wszystkich tokenów
    • Wstępne przetwarzanie tekstu
    • Usuwanie stop-słów
    • Upraszczanie odmian
  • Wizualizacja danych tekstowych z wykorzystaniem techniki t-SNE
    • Co to jest redukcja wymiarowości?
    • Redukcja wymiarowości przy użyciu techniki t-SNE
  • Podsumowanie
  • Ćwiczenia

Rozdział 10. Wyszukiwanie ukrytych tematów w grupach dyskusyjnych poprzez ich klastrowanie i modelowanie tematyczne

  • Nauka bez wskazówek, czyli uczenie nienadzorowane
  • Klastrowanie grup dyskusyjnych metodą k-średnich
    • Jak działa klastrowanie metodą k-średnich?
    • Implementacja klastrowania metodą k-średnich od podstaw
    • Implementacja klastrowania metodą k-średnich z wykorzystaniem pakietu scikit-learn
    • Dobór wartości k
    • Klastrowanie danych z grup dyskusyjnych metodą k-średnich
  • Odkrywanie ukrytych tematów grup dyskusyjnych
    • Modelowanie tematyczne z wykorzystaniem nieujemnej faktoryzacji macierzy
    • Modelowanie tematyczne z wykorzystaniem ukrytej alokacji Dirichleta
  • Podsumowanie
  • Ćwiczenia

Rozdział 11. Dobre praktyki uczenia maszynowego

  • Proces rozwiązywania problemów uczenia maszynowego
  • Dobre praktyki przygotowywania danych
    • Dobra praktyka nr 1. Dokładne poznanie celu projektu
    • Dobra praktyka nr 2. Zbieranie wszystkich istotnych pól
    • Dobra praktyka nr 3. Ujednolicenie danych
    • Dobra praktyka nr 4. Opracowanie niekompletnych danych
    • Dobra praktyka nr 5. Przechowywanie dużych ilości danych
  • Dobre praktyki tworzenia zbioru treningowego
    • Dobra praktyka nr 6. Oznaczanie cech kategorialnych liczbami
    • Dobra praktyka nr 7. Rozważenie kodowania cech kategorialnych
    • Dobra praktyka nr 8. Rozważenie selekcji cech i wybór odpowiedniej metody
    • Dobra praktyka nr 9. Rozważenie redukcji wymiarowości i wybór odpowiedniej metody
    • Dobra praktyka nr 10. Rozważenie normalizacji cech
    • Dobra praktyka nr 11. Inżynieria cech na bazie wiedzy eksperckiej
    • Dobra praktyka nr 12. Inżynieria cech bez wiedzy eksperckiej
    • Dobra praktyka nr 13. Dokumentowanie procesu tworzenia cech
    • Dobra praktyka nr 14. Wyodrębnianie cech z danych tekstowych
  • Dobre praktyki trenowania, oceniania i wybierania modelu
    • Dobra praktyka nr 15. Wybór odpowiedniego algorytmu początkowego
    • Dobra praktyka nr 16. Zapobieganie nadmiernemu dopasowaniu
    • Dobra praktyka nr 17. Diagnozowanie nadmiernego i niedostatecznego dopasowania
    • Dobra praktyka nr 18. Modelowanie dużych zbiorów danych
  • Dobre praktyki wdrażania i monitorowania modelu
    • Dobra praktyka nr 19. Zapisywanie, ładowanie i wielokrotne stosowanie modelu
    • Dobra praktyka nr 20. Monitorowanie skuteczności modelu
    • Dobra praktyka nr 21. Regularne aktualizowanie modelu
  • Podsumowanie
  • Ćwiczenia

Rozdział 12. Kategoryzacja zdjęć odzieży przy użyciu konwolucyjnej sieci neuronowej

  • Bloki konstrukcyjne konwolucyjnej sieci neuronowej
    • Warstwa konwolucyjna
    • Warstwa nieliniowa
    • Warstwa redukująca
  • Budowanie konwolucyjnej sieci neuronowej na potrzeby klasyfikacji
  • Badanie zbioru zdjęć odzieży
  • Klasyfikowanie zdjęć odzieży za pomocą konwolucyjnej sieci neuronowej
    • Tworzenie sieci
    • Trening sieci
    • Wizualizacja filtrów konwolucyjnych
  • Wzmacnianie konwolucyjnej sieci neuronowej poprzez uzupełnianie danych
    • Odwracanie obrazów w poziomie i pionie
    • Obracanie obrazów
    • Przesuwanie obrazów
  • Usprawnianie klasyfikatora obrazów poprzez uzupełnianie danych
  • Podsumowanie
  • Ćwiczenia

Rozdział 13. Prognozowanie sekwencji danych przy użyciu rekurencyjnej sieci neuronowej

  • Wprowadzenie do uczenia sekwencyjnego
  • Architektura rekurencyjnej sieci neuronowej na przykładzie
    • Mechanizm rekurencyjny
    • Sieć typu "wiele do jednego"
    • Sieć typu "jedno do wielu"
    • Sieć synchroniczna typu "wiele do wielu"
    • Sieć niesynchroniczna typu "wiele do wielu"
  • Trening rekurencyjnej sieci neuronowej
  • Długoterminowe zależności i sieć LSTM
  • Analiza recenzji filmowych za pomocą sieci neuronowej
    • Analiza i wstępne przetworzenie recenzji
    • Zbudowanie prostej sieci LSTM
    • Poprawa skuteczności poprzez wprowadzenie dodatkowych warstw
  • Pisanie nowej powieści "Wojna i pokój" za pomocą rekurencyjnej sieci neuronowej
    • Pozyskanie i analiza danych treningowych
    • Utworzenie zbioru treningowego dla generatora tekstu
    • Utworzenie generatora tekstu
    • Trening generatora tekstu
  • Zaawansowana analiza języka przy użyciu modelu Transformer
    • Architektura modelu
    • Samouwaga
  • Podsumowanie
  • Ćwiczenia

Rozdział 14. Podejmowanie decyzji w skomplikowanych warunkach z wykorzystaniem uczenia przez wzmacnianie

  • Przygotowanie środowiska do uczenia przez wzmacnianie
    • Instalacja biblioteki PyTorch
    • Instalacja narzędzi OpenAI Gym
  • Wprowadzenie do uczenia przez wzmacnianie z przykładami
    • Komponenty uczenia przez wzmacnianie
    • Sumaryczna nagroda
    • Algorytmy uczenia przez wzmacnianie
  • Problem FrozenLake i programowanie dynamiczne
    • Utworzenie środowiska FrozenLake
    • Rozwiązanie problemu przy użyciu algorytmu iteracji wartości
    • Rozwiązanie problemu przy użyciu algorytmu iteracji polityki
  • Metoda Monte Carlo uczenia przez wzmacnianie
    • Utworzenie środowiska Blackjack
    • Ocenianie polityki w metodzie Monte Carlo
    • Sterowanie Monte Carlo z polityką
  • Problem taksówkarza i algorytm Q-uczenia
    • Utworzenie środowiska Taxi
    • Implementacja algorytmu Q-uczenia
  • Podsumowanie
  • Ćwiczenia

Skorowidz

Marka
Autor
Yuxi (Hayden) Liu
ISBN
9788328388703
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
pixel