Darmowa dostawa od 150,00 zł
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Promocja Okazja

Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch

  • Rok wydania: 2024 Oprawa: miękka Ilość stron: 264 Format: 168x237
Rozmiar

67,41 zł

brutto / 1szt.
Najniższa cena z 30 dni przed obniżką: 74,90 zł / szt.-10%
Cena regularna: 74,90 zł / szt.-10%
Cena katalogowa:
Możesz kupić za pkt.
z
Produkt dostępny w bardzo dużej ilości
Skontaktuj się z obsługą sklepu, aby oszacować czas przygotowania tego produktu do wysyłki.
Produkt dostępny w bardzo dużej ilości
Wysyłka
14 dni na łatwy zwrot
Sprawdź, w którym sklepie obejrzysz i kupisz od ręki
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Spark. Rozproszone uczenie maszynowe na dużą skalę. Jak korzystać z MLlib, TensorFlow i PyTorch
Bezpieczne zakupy
Odroczone płatności. Kup teraz, zapłać później, jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Po zakupie otrzymasz pkt.

Jeśli chcesz dostosować swoją pracę do większych zbiorów danych i bardziej złożonych kodów, potrzebna Ci jest znajomość technik rozproszonego uczenia maszynowego. W tym celu warto poznać frameworki Apache Spark, PyTorch i TensorFlow, a także bibliotekę MLlib. Biegłość w posługiwaniu się tymi narzędziami przyda Ci się w całym cyklu życia oprogramowania ― nie tylko ułatwi współpracę, ale również tworzenie powtarzalnego kodu.

Dzięki tej książce nauczysz się holistycznego podejścia, które zdecydowanie usprawni współpracę między zespołami. Najpierw zapoznasz się z podstawowymi informacjami o przepływach pracy związanych z uczeniem maszynowym przy użyciu Apache Spark i pakietu PySpark. Nauczysz się też zarządzać cyklem życia eksperymentów dla potrzeb uczenia maszynowego za pomocą biblioteki MLflow. Z kolejnych rozdziałów dowiesz się, jak od strony technicznej wygląda korzystanie z platformy uczenia maszynowego. W książce znajdziesz również opis wzorców wdrażania, wnioskowania i monitorowania modeli w środowisku produkcyjnym.

Najciekawsze zagadnienia:

  • cykl życia uczenia maszynowego i MLflow
  • inżynieria cech i przetwarzanie wstępne za pomocą Sparka
  • szkolenie modelu i budowa potoku
  • budowa systemu danych z wykorzystaniem uczenia głębokiego
  • praca TensorFlow w trybie rozproszonym
  • skalowanie systemu i tworzenie jego wewnętrznej architektury

Właśnie takiej książki społeczność Sparka wyczekuje od dekady!

Andy Petrella, autor książki Fundamentals of Data Observability

Marka
Kod producenta
9788328912342
ISBN
978-83-289-1234-2
9788328912342
Autor
Adi Polak
Format
165x235
Oprawa
miękka
Liczba stron
264
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
pixel