Darmowa dostawa od 150,00 zł
Uczenie maszynowe w C#. Szybkie, sprytne i solidne aplikacje

Uczenie maszynowe w C#. Szybkie, sprytne i solidne aplikacje

  • Rok wydania: 2019 Oprawa: miękka Ilość stron: 216 Format: 168x237
Rozmiar
Najniższa cena z 30 dni przed obniżką: / szt.
Cena regularna: / szt.
Cena katalogowa:
Możesz kupić za pkt.
z
Produkt dostępny w bardzo dużej ilości
Skontaktuj się z obsługą sklepu, aby oszacować czas przygotowania tego produktu do wysyłki.
Produkt dostępny w bardzo dużej ilości
Wysyłka
14 dni na łatwy zwrot
Sprawdź, w którym sklepie obejrzysz i kupisz od ręki
Uczenie maszynowe w C#. Szybkie, sprytne i solidne aplikacje
Uczenie maszynowe w C#. Szybkie, sprytne i solidne aplikacje
Bezpieczne zakupy
Odroczone płatności. Kup teraz, zapłać później, jeżeli nie zwrócisz
Kup teraz, zapłać później - 4 kroki
Przy wyborze formy płatności, wybierz PayPo.PayPo - kup teraz, zapłać za 30 dni
PayPo opłaci twój rachunek w sklepie.
Na stronie PayPo sprawdź swoje dane i podaj pesel.
Po otrzymaniu zakupów decydujesz co ci pasuje, a co nie. Możesz zwrócić część albo całość zamówienia - wtedy zmniejszy się też kwota do zapłaty PayPo.
W ciągu 30 dni od zakupu płacisz PayPo za swoje zakupy bez żadnych dodatkowych kosztów. Jeśli chcesz, rozkładasz swoją płatność na raty.
Po zakupie otrzymasz pkt.

Uczenie maszynowe weszło już do kanonu technologii informatycznych. Praktyczne umiejętności w tej dziedzinie powinien posiadać każdy programista i analityk. Standardowo do rozwiązań związanych z machine learning stosuje się Pythona i opracowane dla niego biblioteki, niemniej równie skutecznie można do tego celu używać innych języków programowania. Trzeba jedynie dobrze zaznajomić się z wdrożeniami algorytmów uczenia maszynowego. Niezwykle ciekawym rozwiązaniem jest pisanie takich implementacji w C#. Przemawiają za tym nie tylko zalety samego języka, ale i to, że większość aplikacji dla profesjonalistów jest pisana w C# przy użyciu takich narzędzi jak Visual Studio, SQL Server, Unity czy Microsoft Azure.

Ta książka jest przeznaczona dla doświadczonych programistów C#, którzy chcą nauczyć się technik machine learning, deep learning i sztucznej inteligencji. Opisano tu dostępne narzędzia do uczenia maszynowego, dzięki którym można łatwo budować inteligentne aplikacje .NET wykorzystujące takie rozwiązania jak wykrywanie obrazów lub ruchu, wnioskowanie bayesowskie, głębokie uczenie i głęboka wiara. Omówiono zasady implementacji algorytmów uczenia nadzorowanego i nienadzorowanego oraz ich zastosowanie w budowie modeli predykcji. Przedstawiono różne techniki, od prostej regresji liniowej, przez drzewa decyzyjne i SVM, po zaawansowane rozwiązania, takie jak sztuczne sieci neuronowe, autoenkodery lub uczenie ze wzmocnieniem.

Najciekawsze zagadnienia przedstawione w książce:

  • podstawy uczenia maszynowego
  • wykorzystywanie logiki rozmytej
  • mapy samoorganizujące się
  • framework Kelp.Net i jego integracja z systemem ReflectInsight
  • realia obliczeń kwantowych

Uczenie maszynowe - najlepiej z wydajnym C#!

O autorze

Matt R. Cole od 30 lat programuje dla systemu Windows — biegle posługuje się językami: C, C++, C# oraz platformą .NET. Napisał system generowania mowy oraz system VOIP dla NASA, którego używano na promach kosmicznych i stacji kosmicznej. Przygotował pierwszy framework mikrousług klasy enterprise (napisany w całości w C# i .NET), wykorzystywany przez jeden z głównych funduszy hedgingowych. Napisał też framework sztucznej inteligencji, w którym zintegrowane zostały neurony lustrzane i kanoniczne.

Spis treści


O autorze 11

O recenzencie 12

Wstęp 9

Rozdział 1. Podstawy uczenia maszynowego 13

  • Wprowadzenie do uczenia maszynowego 14
  • Wydobywanie danych 18
  • Sztuczna inteligencja 18
  • Bio-SI 18
  • Uczenie głębokie 19
  • Probabilistyka i statystyka 19
  • Rozpoczynanie projektu uczenia maszynowego 20
    • Zbieranie danych 20
    • Przygotowanie danych 20
    • Wybranie modelu i trening 21
    • Ocena modelu 22
    • Poprawianie modelu 22
  • Zbiór danych o irysach 22
    • Rodzaje uczenia maszynowego 24
  • Uczenie nadzorowane 25
    • Kompromis odchylenie - wariancja 25
    • Ilość danych treningowych 26
    • Wymiarowość przestrzeni wejścia 27
    • Nieprawidłowe wartości wyjścia 27
    • Heterogeniczność danych 27
  • Uczenie nienadzorowane 28
  • Uczenie ze wzmocnieniem 29
  • Lepiej kupić, zbudować czy skorzystać z otwartych źródeł? 29
  • Dodatkowa lektura 30
  • Podsumowanie 31
  • Odwołania 31

Rozdział 2. ReflectInsight - monitorowanie w czasie rzeczywistym 33

  • Router 34
  • Przeglądarka protokołu 35
  • Przeglądarka na żywo 35
    • Nawigacja w komunikatach 35
    • Przeszukiwanie komunikatów 38
    • Formatowanie czasu i daty 38
    • Automatyczne zapisywanie i czyszczenie 39
    • SDK 43
    • Edytor konfiguracji 43
  • Podsumowanie 45

Rozdział 3. Wnioskowanie Bayesa - rozwiązywanie zagadki ucieczki z miejsca wypadku i analizowanie danych 47

  • Twierdzenie Bayesa 48
  • Naiwny klasyfikator bayesowski i rysowanie danych 54
    • Rysowanie danych 55
  • Podsumowanie 61
  • Odwołania 63

Rozdział 4. Ryzyko i nagroda - uczenie ze wzmocnieniem 65

  • Uczenie ze wzmocnieniem 65
  • Rodzaje uczenia 68
  • Q-uczenie 68
  • SARSA 69
  • Uruchamianie aplikacji 69
  • Wieże Hanoi 74
  • Podsumowanie 80
  • Odwołania 81

Rozdział 5. Logika rozmyta - nawigowanie na torze przeszkód 83

  • Logika rozmyta 84
  • Pojazd kierowany automatycznie 86
  • Podsumowanie 95
  • Odwołania 95

Rozdział 6. Łączenie kolorów - mapy samoorganizujące i elastyczne sieci neuronowe 97

  • Zrozumieć istotę sieci samoorganizującej 98
  • Podsumowanie 112

Rozdział 7. Wykrywanie twarzy i ruchu - filtrowanie obrazów 113

  • Wykrywanie twarzy 114
  • Wykrywanie ruchu 122
    • Dodawanie funkcji wykrywania ruchu do swojej aplikacji 125
  • Podsumowanie 127

Rozdział 8. Encyklopedia i neurony - problem komiwojażera 129

  • Problem komiwojażera 129
  • Parametr współczynnika uczenia 147
  • Promień uczenia 148
  • Podsumowanie 148

Rozdział 9. Mam przyjąć tę pracę? - drzewa decyzji w akcji 149

  • Drzewo decyzyjne 150
    • Węzeł decyzyjny 151
    • Zmienna decyzyjna 151
    • Kolekcja węzłów gałęzi decyzyjnej 151
  • Mam przyjąć tę pracę? 152
  • numl 154
  • Drzewa decyzyjne w Accord.NET 155
    • Kod uczący 156
    • Tablica pomyłek 158
    • Wizualizacja typu błędu 159
  • Podsumowanie 161
  • Odwołania 161

Rozdział 10. Głęboka wiara - głębokie sieci i sny 163

  • Ograniczone maszyny Boltzmanna 163
  • Warstwy 166
  • O czym śni komputer? 171
  • Podsumowanie 175
  • Odwołania 175

Rozdział 11. Mikrotesty porównawcze i funkcje aktywacji 177

  • Rysowanie funkcji aktywacji 178
  • Rysowanie wszystkich funkcji aktywacji 180
  • Główna funkcja rysująca 181
  • Testy porównawcze 182
  • Podsumowanie 186

Rozdział 12. Intuicyjne uczenie głębokie w C# i .NET 187

  • Czym jest uczenie głębokie? 188
    • OpenCL 189
    • Hierarchia OpenCL 189
  • Framework Kelp.Net 192
    • Funkcje 192
    • Stosy funkcji 192
    • Słowniki funkcji 194
    • Caffe 194
    • Strata 195
    • Optymalizacje 195
    • Zbiory danych 196
    • Testy 198
    • Monitorowanie w Kelp.Net 199
    • Weaver 200
    • Tworzenie testów 202
    • Testy porównawcze funkcji 203
    • Uruchamianie testu porównawczego 203
  • Podsumowanie 206
  • Odwołania 206

Rozdział 13. Obliczenia kwantowe - spojrzenie w przyszłość 207

  • Superpozycja 209
  • Teleportacja 209
    • Splątanie 209
  • Podsumowanie 213

Skorowidz 214

Marka
Autor
Matt R. Cole
ISBN
9788328352339
Potrzebujesz pomocy? Masz pytania?Zadaj pytanie a my odpowiemy niezwłocznie, najciekawsze pytania i odpowiedzi publikując dla innych.
Zapytaj o produkt
Jeżeli powyższy opis jest dla Ciebie niewystarczający, prześlij nam swoje pytanie odnośnie tego produktu. Postaramy się odpowiedzieć tak szybko jak tylko będzie to możliwe. Dane są przetwarzane zgodnie z polityką prywatności. Przesyłając je, akceptujesz jej postanowienia.
Napisz swoją opinię
Twoja ocena:
5/5
Dodaj własne zdjęcie produktu:
pixel